Search results
Results From The WOW.Com Content Network
The word "bounded" makes no sense in a general topological space without a corresponding metric. Boundary is a distinct concept; for example, a circle (not to be confused with a disk) in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. A bounded set is not necessarily a closed set and vice
[0, 1] 2 is a totally bounded space because for every ε > 0, the unit square can be covered by finitely many open discs of radius ε. A metric space (,) is totally bounded if and only if for every real number >, there exists a finite collection of open balls of radius whose centers lie in M and whose union contains M.
Bounded region is defined similarly. An exterior domain or external domain is a domain whose complement is bounded; sometimes smoothness conditions are imposed on its boundary. In complex analysis , a complex domain (or simply domain ) is any connected open subset of the complex plane C .
The collection of all bounded sets on a topological vector space is called the von Neumann bornology or the (canonical) bornology of .. A base or fundamental system of bounded sets of is a set of bounded subsets of such that every bounded subset of is a subset of some . [1] The set of all bounded subsets of trivially forms a fundamental system of bounded sets of .
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
Balanced set – Construct in functional analysis; Bounded set (topological vector space) – Generalization of boundedness; Convex set – In geometry, set whose intersection with every line is a single line segment; Star domain – Property of point sets in Euclidean spaces; Symmetric set – Property of group subsets (mathematics)
A real-valued or complex-valued function defined on some topological space is called a locally bounded functional if for any there exists a neighborhood of such that () is a bounded set. That is, for some number M > 0 {\displaystyle M>0} one has | f ( x ) | ≤ M for all x ∈ A . {\displaystyle |f(x)|\leq M\quad {\text{ for all }}x\in A.}
In mathematics, a uniformly bounded family of functions is a family of bounded functions that can all be bounded by the same constant. This constant is larger than or equal to the absolute value of any value of any of the functions in the family.