When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    The original triple comprises the constant term in each of the respective quadratic equations. Below is a sample output from these equations. The effect of these equations is to cause the m-value in the Euclid equations to increment in steps of 4, while the n-value increments by 1.

  3. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    In terms of a new quantity ⁠ ⁠, this expression is a quadratic polynomial with no linear term. By subsequently isolating ⁠ ( x − h ) 2 {\displaystyle \textstyle (x-h)^{2}} ⁠ and taking the square root , a quadratic problem can be reduced to a linear problem.

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term. [2] The values of x that satisfy the equation are called solutions of the equation, and roots or zeros of the quadratic function on its ...

  6. Power residue symbol - Wikipedia

    en.wikipedia.org/wiki/Power_residue_symbol

    In algebraic number theory the n-th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n-th powers. These symbols are used in the statement and proof of cubic , quartic , Eisenstein , and related higher [ 1 ] reciprocity laws .

  7. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Then the intervals containing one root may be further reduced for getting a quadratic convergence of Newton's method to the isolated roots. The main computer algebra systems ( Maple , Mathematica , SageMath , PARI/GP ) have each a variant of this method as the default algorithm for the real roots of a polynomial.

  8. Kummer theory - Wikipedia

    en.wikipedia.org/wiki/Kummer_theory

    K contains n distinct nth roots of unity (i.e., roots of X n − 1) L/K has abelian Galois group of exponent n. For example, when n = 2, the first condition is always true if K has characteristic ≠ 2. The Kummer extensions in this case include quadratic extensions = where a in K is a non-square element.

  9. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Another way to see this result is to note that any interpolating cubic polynomial can be expressed as the sum of the unique interpolating quadratic polynomial plus an arbitrarily scaled cubic polynomial that vanishes at all three points in the interval, and the integral of this second term vanishes because it is odd within the interval.