Search results
Results From The WOW.Com Content Network
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In mathematics, an empty sum, or nullary sum, [1] is a summation where the number of terms is zero. The natural way to extend non-empty sums [ 2 ] is to let the empty sum be the additive identity . Let a 1 {\displaystyle a_{1}} , a 2 {\displaystyle a_{2}} , a 3 {\displaystyle a_{3}} , ... be a sequence of numbers, and let
The set of integers modulo 2 has just two elements; the addition operation it inherits is known in Boolean logic as the "exclusive or" function. A similar "wrap around" operation arises in geometry, where the sum of two angle measures is often taken to be their sum as real numbers modulo 2π
If the sum is a two-digit number then the leftmost digit, called the "carry", is added to the next pair of digits to the left. This process is repeated until all digits have been added. [ 65 ] Other methods used for integer additions are the number line method, the partial sum method, and the compensation method. [ 66 ]
In discrete calculus the indefinite sum operator (also known as the antidifference operator), denoted by or , [1] [2] is the linear operator, inverse of the forward difference operator. It relates to the forward difference operator as the indefinite integral relates to the derivative .
Use of direct sum terminology and notation is especially problematic when dealing with infinite families of rings: If () is an infinite collection of nontrivial rings, then the direct sum of the underlying additive groups can be equipped with termwise multiplication, but this produces a rng, that is, a ring without a multiplicative identity.
which increases without bound as n goes to infinity. Because the sequence of partial sums fails to converge to a finite limit , the series does not have a sum. Although the series seems at first sight not to have any meaningful value at all, it can be manipulated to yield a number of different mathematical results.
Another example is a pseudocode implementation of addition, showing how to calculate a sum of two integers a and b using bitwise operators and zero-testing: while a ≠ 0 c ← b and a b ← b xor a left shift c by 1 a ← c return b