Ads
related to: maxwell's equations problems and solutions
Search results
Results From The WOW.Com Content Network
The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics.
Electromagnetic behavior is governed by Maxwell's equations, and all parasitic extraction requires solving some form of Maxwell's equations. That form may be a simple analytic parallel plate capacitance equation or may involve a full numerical solution for a complex 3D geometry with wave propagation.
Because of the linearity of Maxwell's equations in a vacuum, solutions can be decomposed into a superposition of sinusoids. This is the basis for the Fourier transform method for the solution of differential equations. The sinusoidal solution to the electromagnetic wave equation takes the form
Eigenmode expansion can solve Maxwell's equations in 2D and 3D and can provide a fully vectorial solution provided that the mode solvers are vectorial. It offers very strong benefits compared with the FDTD method for the modelling of optical waveguides, and it is a popular tool for the modelling of fiber optics and silicon photonics devices.
PWE is traceable to the analytical formulations, and is useful in calculating modal solutions of Maxwell's equations over an inhomogeneous or periodic geometry. [1] It is specifically tuned to solve problems in a time-harmonic forms, with non-dispersive media (a reformulation of the method named Inverse dispersion allows frequency-dependent ...
Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]
One of the early uses of the matrix forms of the Maxwell's equations was to study certain symmetries, and the similarities with the Dirac equation. The matrix form of the Maxwell's equations is used as a candidate for the Photon Wavefunction. [8] Historically, the geometrical optics is based on the Fermat's principle of least time. Geometrical ...
Eighteen of Maxwell's twenty original equations can be vectorized into six equations, labeled to below, each of which represents a group of three original equations in component form. The 19th and 20th of Maxwell's component equations appear as and below, making a total of eight vector equations. These are listed below in Maxwell's original ...