When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Galileo deduced the equation s = ⁠ 1 / 2 ⁠ gt 2 in his work geometrically, [4] using the Merton rule, now known as a special case of one of the equations of kinematics. Galileo was the first to show that the path of a projectile is a parabola. Galileo had an understanding of centrifugal force and gave a correct definition of momentum. This ...

  4. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    Gradient of the 2D function f(x, y) = xe −(x 2 + y 2) is plotted as arrows over the pseudocolor plot of the function.. Consider a room where the temperature is given by a scalar field, T, so at each point (x, y, z) the temperature is T(x, y, z), independent of time.

  5. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    This is the equation of a parabola, so the path is parabolic. The axis of the parabola is vertical. If the projectile's position (x,y) and launch angle (θ or α) are known, the initial velocity can be found solving for v 0 in the afore-mentioned parabolic equation:

  6. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x 2 + y 2 = 4; the area, the perimeter and the tangent line at any point can be computed from this equation by using integrals and derivatives, in a way that can be applied to any curve.

  7. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3.

  8. Curve - Wikipedia

    en.wikipedia.org/wiki/Curve

    A plane algebraic curve is the set of the points of coordinates x, y such that f(x, y) = 0, where f is a polynomial in two variables defined over some field F. One says that the curve is defined over F. Algebraic geometry normally considers not only points with coordinates in F but all the points with coordinates in an algebraically closed field K.

  9. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    When x and y are real variables, the derivative of f at x is the slope of the tangent line to the graph of f at x. Because the source and target of f are one-dimensional, the derivative of f is a real number. If x and y are vectors, then the best linear approximation to the graph of f depends on how f changes in several