Search results
Results From The WOW.Com Content Network
Electron tomography is an extension of traditional transmission electron microscopy and uses a transmission electron microscope to collect the data. In the process, a beam of electrons is passed through the sample at incremental degrees of rotation around the center of the target sample.
Name or phenomenon Description Diagram Beta decay: beta particle is emitted from an atomic nucleus Compton scattering: scattering of a photon by a charged particle Neutrino-less double beta decay: If neutrinos are Majorana fermions (that is, their own antiparticle), Neutrino-less double beta decay is possible. Several experiments are searching ...
In contrast to other electron tomography techniques, samples are imaged under cryogenic conditions (< −150 °C). For cellular material, the structure is immobilized in non-crystalline, vitreous ice, allowing them to be imaged without dehydration or chemical fixation, which would otherwise disrupt or distort biological structures. [3] [4]
For example, different elements in a sample result in different electron energies in the beam after the sample. This normally results in chromatic aberration – however this effect can, for example, be used to generate an image which provides information on elemental composition, based upon the atomic transition during electron-electron ...
High angle ADF STEM is a particularly useful imaging mode for electron tomography because the intensity of high angle ADF-STEM images varies only with the projected mass-thickness of the sample, and the atomic number of atoms in the sample. This yields highly interpretable three dimensional reconstructions. [32]
High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. [ 1 ] [ 2 ] It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp 2 -bonded carbon (e.g ...
EFTEM – Energy filtered transmission electron microscopy; EID – Electron induced desorption; EIT and ERT – Electrical impedance tomography and electrical resistivity tomography; EL – Electroluminescence; Electron crystallography; ELS – Electrophoretic light scattering; ENDOR – Electron nuclear double resonance, see ESR or EPR
Computed tomography (CT) and positron emission tomography (PET) scans are similar to MRI, but rely on different imaging techniques (X-rays and ionizing radiation, respectively). A variation of CT known as contrast CT also requires the subject to take in a contrast medium called a radiocontrast (typically by oral consumption, enema, or injection).