Search results
Results From The WOW.Com Content Network
Instead of solving a specific type of problem, which would seem intuitively easier, it can be easier to solve a more general problem, which covers the specifics of the sought-after solution. The inventor's paradox has been used to describe phenomena in mathematics , programming , and logic , as well as other areas that involve critical thinking .
For proportional transaction costs the problem was solved by Davis and Norman in 1990. [6] It is one of the few cases of stochastic singular control where the solution is known. For a graphical representation, the amount invested in each of the two assets can be plotted on the x - and y -axes; three diagonal lines through the origin can be ...
f : ℝ n → ℝ is the objective function to be minimized over the n-variable vector x, g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem.
Sought: an element x 0 ∈ A such that f(x 0) ≤ f(x) for all x ∈ A ("minimization") or such that f(x 0) ≥ f(x) for all x ∈ A ("maximization"). Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming , but still in use for example in linear ...
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.
Solving Ordinary Differential Equations. I. Nonstiff Problems. Springer Series in Computational Mathematics. Vol. 8 (2nd ed.). Springer-Verlag, Berlin. ISBN 3-540-56670-8. MR 1227985. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996.
[1] The modeling strategy of relaxation should not be confused with iterative methods of relaxation, such as successive over-relaxation (SOR); iterative methods of relaxation are used in solving problems in differential equations, linear least-squares, and linear programming. [2] [3] [4] However, iterative methods of relaxation have been used ...