When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5] In this book Lagrange starts with the Lagrangian specification but later converts them into the Eulerian specification. [5]

  3. Lagrangian system - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_system

    A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold J r Y of Y. A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O ∗ ∞ ( Y ) of exterior forms on jet manifolds of Y → X .

  4. Lagrangian (field theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_(field_theory)

    In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...

  5. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    In a set of curvilinear coordinates ξ = (ξ 1, ξ 2, ξ 3), the law in tensor index notation is the "Lagrangian form" [18] [19] = (+) = (˙), ˙, where F a is the a-th contravariant component of the resultant force acting on the particle, Γ a bc are the Christoffel symbols of the second kind, = is the kinetic energy of the particle, and g bc ...

  6. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    This is a suitable choice of generalized coordinate for the system. Only one coordinate is needed instead of two, because the position of the bead can be parameterized by one number, s, and the constraint equation connects the two coordinates x and y; either one is determined from the other. The constraint force is the reaction force the wire ...

  7. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    In continuum mechanics, the material derivative [1] [2] describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum ...

  8. Tautological one-form - Wikipedia

    en.wikipedia.org/wiki/Tautological_one-form

    In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle of a manifold. In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus providing a bridge between Lagrangian mechanics and Hamiltonian mechanics (on the manifold ).

  9. Lagrangian coherent structure - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_coherent_structure

    In contrast, the LCSs creating these trajectory patterns turn out to be robust and provide a simplified skeleton of the overall dynamics of the system. [1] [4] [5] [6] The robustness of this skeleton makes LCSs ideal tools for model validation, model comparison and benchmarking. LCSs can also be used for now-casting and even short-term ...