Ads
related to: exponential distribution with mean 2 different variables worksheet 3
Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
If X 1 and X 2 are independent exponential random variables with rate μ 1 and μ 2 respectively, then min(X 1, X 2) is an exponential random variable with rate μ = μ 1 + μ 2. Similarly, distributions for which the maximum value of several independent random variables is a member of the same family of distribution include: Bernoulli ...
The Dagum distribution; The exponential distribution, which describes the time between consecutive rare random events in a process with no memory. The exponential-logarithmic distribution; The F-distribution, which is the distribution of the ratio of two (normalized) chi-squared-distributed random variables, used in the analysis of variance.
The Erlang distribution is the distribution of a sum of independent exponential variables with mean / each. Equivalently, it is the distribution of the time until the kth event of a Poisson process with a rate of . The Erlang and Poisson distributions are complementary, in that while the Poisson distribution counts the events that occur in a ...
A more general case of this concerns the distribution of the product of a random variable having a beta distribution with a random variable having a gamma distribution: for some cases where the parameters of the two component distributions are related in a certain way, the result is again a gamma distribution but with a changed shape parameter ...
The terms "distribution" and "family" are often used loosely: Specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; [a] however, a parametric family of distributions is often referred to as "a distribution" (like "the normal distribution", meaning "the family of normal distributions"), and the set of all exponential families ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Every probability distribution is trivially a maximum entropy probability distribution under the constraint that the distribution has its own entropy. To see this, rewrite the density as p ( x ) = exp ( ln p ( x ) ) {\displaystyle p(x)=\exp {(\ln {p(x)})}} and compare to the expression of the theorem above.