When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    The wave equation describing a standing wave field in one dimension (position ) is p x x − 1 c 2 p t t = 0 , {\displaystyle p_{xx}-{\frac {1}{c^{2}}}p_{tt}=0,} where p {\displaystyle p} is the acoustic pressure (the local deviation from the ambient pressure) and c {\displaystyle c} the speed of sound , using subscript notation for the partial ...

  3. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    A complex relationship between the density and pressure of the medium. This relationship, affected by temperature, determines the speed of sound within the medium. Motion of the medium itself. If the medium is moving, this movement may increase or decrease the absolute speed of the sound wave depending on the direction of the movement.

  4. Sound intensity - Wikipedia

    en.wikipedia.org/wiki/Sound_intensity

    Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area, also called the sound power density and the sound energy flux density. [2] The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m 2).

  5. Amplitude - Wikipedia

    en.wikipedia.org/wiki/Amplitude

    Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .

  6. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  7. Wave vector - Wikipedia

    en.wikipedia.org/wiki/Wave_vector

    A is the amplitude of the wave (the peak magnitude of the oscillation), φ is a phase offset , ω is the (temporal) angular frequency of the wave, describing how many radians it traverses per unit of time, and related to the period T by the equation ω = 2 π T , {\displaystyle \omega ={\tfrac {2\pi }{T}},}

  8. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency.

  9. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    Wavenumber, as used in spectroscopy and most chemistry fields, is defined as the number of wavelengths per unit distance, typically centimeters (cm −1): ~ =, where λ is the wavelength. It is sometimes called the "spectroscopic wavenumber". [1]