When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pollard's rho algorithm for logarithms - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm_for...

    Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, analogous to Pollard's rho algorithm to solve the integer factorization problem.

  3. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.

  4. Discrete logarithm records - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm_records

    ECC2K-108, involving taking a discrete logarithm on a Koblitz curve over a field of 2 108 elements. The prize was awarded on 4 April 2000 to a group of about 1300 people represented by Robert Harley. They used a parallelized Pollard rho method with speedup. ECC2-109, involving taking a discrete logarithm on a curve over a field of 2 109 ...

  5. Pollard's kangaroo algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_kangaroo_algorithm

    The algorithm was introduced in 1978 by the number theorist John M. Pollard, in the same paper as his better-known Pollard's rho algorithm for solving the same problem. [ 1 ] [ 2 ] Although Pollard described the application of his algorithm to the discrete logarithm problem in the multiplicative group of units modulo a prime p , it is in fact a ...

  6. Baby-step giant-step - Wikipedia

    en.wikipedia.org/wiki/Baby-step_giant-step

    In group theory, a branch of mathematics, the baby-step giant-step is a meet-in-the-middle algorithm for computing the discrete logarithm or order of an element in a finite abelian group by Daniel Shanks. [1] The discrete log problem is of fundamental importance to the area of public key cryptography.

  7. Index calculus algorithm - Wikipedia

    en.wikipedia.org/wiki/Index_calculus_algorithm

    This was considered a minor step compared to the others for smaller discrete log computations. However, larger discrete logarithm records [1] [2] were made possible only by shifting the work away from the linear algebra and onto the sieve (i.e., increasing the number of equations while reducing the number of variables).

  8. Function field sieve - Wikipedia

    en.wikipedia.org/wiki/Function_field_sieve

    The discrete logarithm problem in a finite field consists of solving the equation = for ,, a prime number and an integer. The function f : F p n → F p n , a ↦ a x {\displaystyle f:\mathbb {F} _{p^{n}}\to \mathbb {F} _{p^{n}},a\mapsto a^{x}} for a fixed x ∈ N {\displaystyle x\in \mathbb {N} } is a one-way function used in cryptography .

  9. Computational Diffie–Hellman assumption - Wikipedia

    en.wikipedia.org/wiki/Computational_Diffie...

    Computing the discrete logarithm is the only known method for solving the CDH problem. But there is no proof that it is, in fact, the only method. It is an open problem to determine whether the discrete log assumption is equivalent to the CDH assumption, though in certain special cases this can be shown to be the case. [3] [4]