When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degeneracy (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(graph_theory)

    In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has at least one vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate.

  3. Core (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Core_(graph_theory)

    Any complete graph is a core. A cycle of odd length is a core. A graph is a core if and only if the core of is equal to . Every two cycles of even length, and more generally every two bipartite graphs are hom-equivalent. The core of each of these graphs is the two-vertex complete graph K 2.

  4. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    A graph is k-choosable (or k-list-colorable) if it has a proper list coloring no matter how one assigns a list of k colors to each vertex. The choosability (or list colorability or list chromatic number) ch(G) of a graph G is the least number k such that G is k-choosable. More generally, for a function f assigning a positive integer f(v) to ...

  5. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    The converse graph is a synonym for the transpose graph; see transpose. core 1. A k-core is the induced subgraph formed by removing all vertices of degree less than k, and all vertices whose degree becomes less than k after earlier removals. See degeneracy. 2. A core is a graph G such that every graph homomorphism from G to itself is an ...

  6. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  7. Regular graph - Wikipedia

    en.wikipedia.org/wiki/Regular_graph

    From the handshaking lemma, a k-regular graph with odd k has an even number of vertices. A theorem by Nash-Williams says that every k ‑regular graph on 2k + 1 vertices has a Hamiltonian cycle. Let A be the adjacency matrix of a graph. Then the graph is regular if and only if = (, …,) is an eigenvector of A. [2]

  8. Discrete mathematics - Wikipedia

    en.wikipedia.org/wiki/Discrete_mathematics

    Graph theory, the study of graphs and networks, is often considered part of combinatorics, but has grown large enough and distinct enough, with its own kind of problems, to be regarded as a subject in its own right. [14] Graphs are one of the prime objects of study in discrete mathematics.

  9. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    The complete bipartite graph K m,n has a vertex covering number of min{m, n} and an edge covering number of max{m, n}. The complete bipartite graph K m,n has a maximum independent set of size max{m, n}. The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 ...