Search results
Results From The WOW.Com Content Network
This method can be used to investigate protein-protein interactions, as well as to investigate modulators of protein-protein interactions by assessing ternary complex formation. An example for such modulators are PROTACs, which are investigated for their therapeutic potential in cancer therapy.
Methods that screen protein–protein interactions in the living cells. Bimolecular fluorescence complementation (BiFC) is a technique for observing the interactions of proteins. Combining it with other new techniques, dual expression recombinase based methods can enable the screening of protein–protein interactions and their modulators. [1]
Antibody arrays are an example in which a host of different antibodies are arrayed to detect their respective antigens from a sample of human blood. Another approach is the arraying of multiple protein types for the study of properties like protein-DNA, protein-protein and protein-ligand interactions.
The stability-based methods below are thought to work due to ligand-induced shifts in equilibrium concentrations of protein conformational states. A single protein type in solution may be represented by individual molecules in a variety of conformations, with many of them different from one another despite being identical in amino acid sequence.
The protein protein interactions are displayed in a signed network that describes what type of interactions that are taking place [74] Protein–protein interactions often result in one of the interacting proteins either being 'activated' or 'repressed'. Such effects can be indicated in a PPI network by "signs" (e.g. "activation" or "inhibition").
Protein–protein interaction prediction is a field combining bioinformatics and structural biology in an attempt to identify and catalog physical interactions between pairs or groups of proteins. Understanding protein–protein interactions is important for the investigation of intracellular signaling pathways, modelling of protein complex ...
Proteomics: Large-scale study of proteins, particularly their structures and functions. Mass spectrometry techniques are used. Chemoproteomics: An array of techniques used to study protein-small molecule interactions; Immunoproteomics: Study of large sets of proteins (proteomics) involved in the immune response
Two-hybrid screening (originally known as yeast two-hybrid system or Y2H) is a molecular biology technique used to discover protein–protein interactions (PPIs) [1] and protein–DNA interactions [2] [3] by testing for physical interactions (such as binding) between two proteins or a single protein and a DNA molecule, respectively.