Search results
Results From The WOW.Com Content Network
The oxidation of reduced sulfur compounds is performed exclusively by Bacteria and Archaea.All the Archaea involved in this process are aerobic and belong to the Order Sulfolobales, [19] [20] characterized by acidophiles (extremophiles that require low pHs to grow) and thermophiles (extremophiles that require high temperatures to grow).
Sulfur is metabolized by all organisms, from bacteria and archaea to plants and animals. Sulfur can have an oxidation state from -2 to +6 and is reduced or oxidized by a diverse range of organisms. [1] The element is present in proteins, sulfate esters of polysaccharides, steroids, phenols, and sulfur-containing coenzymes. [2]
Sulfur can be found under several oxidation states in nature, mainly −2, −1, 0, +2 (apparent), +2.5 (apparent), +4, and +6. When two sulfur atoms are present in the same polyatomic oxyanion in an asymmetrical situation, i.e, each bound to different groups as in thiosulfate, the oxidation state calculated from the known oxidation state of accompanying atoms (H = +1, and O = −2) can be an ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 1 February 2025. This article is about the chemical element. For other uses, see Sulfur (disambiguation). Chemical element with atomic number 16 (S) Sulfur, 16 S Sulfur Alternative name Sulphur (pre-1992 British spelling) Allotropes see Allotropes of sulfur Appearance Lemon yellow sintered microcrystals ...
Sulfide Oxidation. Under aerobic conditions, sulfide is oxidized to sulfur and then sulfate by sulfur oxidizing bacteria, such as Thiobacillus, Beggiatoa and many others. Under anaerobic conditions, sulfide can be oxidized to sulfur and then sulfate by Purple and Green sulfur bacteria. H 2 S → S 0 → SO 2− 4. Sulfur Oxidation
Generally, the oxidation of sulfide occurs in stages, with inorganic sulfur being stored either inside or outside of the cell until needed. This two step process occurs because energetically sulfide is a better electron donor than inorganic sulfur or thiosulfate, allowing for a greater number of protons to be translocated across the membrane.
Sulfur polycations, S 8 2+, S 4 2+ and S 16 2+ are produced when sulfur is reacted with oxidising agents in a strongly acidic solution. [1] The colored solutions produced by dissolving sulfur in oleum were first reported as early as 1804 by C.F. Bucholz, but the cause of the color and the structure of the polycations involved was only ...
The most well-studied sulfur specific pathway is the 4S pathway, first discovered in the bacterium Rhodococcus erythropolis (strain IGTS8), [1] which was observed to remove sulfur from dibenzothiophenes and derivatives in three steps: i) a double oxidation of the sulfur (to sulfoxide and sulfone) performed by a flavin-dependent monoxygenase ...