Search results
Results From The WOW.Com Content Network
Ergodic Ramsey theory is a branch of mathematics where problems motivated by additive combinatorics are proven using ergodic theory. ... Erdős and Turán conjectured ...
Paul Erdős was born on 26 March 1913, in Budapest, Austria-Hungary, [8] the only surviving child of Anna (née Wilhelm) and Lajos Erdős (né Engländer). [9] [10] His two sisters, aged three and five, both died of scarlet fever a few days before he was born. [11]
Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of the mathematical field of combinatorics that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask a question of the form: "how big must some structure be to guarantee ...
In the mathematical theory of infinite graphs, the Erdős–Dushnik–Miller theorem is a form of Ramsey's theorem stating that every infinite graph contains either a countably infinite independent set, or a clique with the same cardinality as the whole graph. [1]
In mathematics, the "happy ending problem" (so named by Paul Erdős because it led to the marriage of George Szekeres and Esther Klein [1]) is the following statement: Theorem — any set of five points in the plane in general position [ 2 ] has a subset of four points that form the vertices of a convex quadrilateral .
In mathematics, the Burr–Erdős conjecture was a problem concerning the Ramsey number of sparse graphs.The conjecture is named after Stefan Burr and Paul Erdős, and is one of many conjectures named after Erdős; it states that the Ramsey number of graphs in any sparse family of graphs should grow linearly in the number of vertices of the graph.
Ramsey's theorem states that such a number exists for all m and n. By symmetry, it is true that R(m, n) = R(n, m). An upper bound for R(r, s) can be extracted from the proof of the theorem, and other arguments give lower bounds. (The first exponential lower bound was obtained by Paul Erdős using the probabilistic method.) However, there is a ...
In partition calculus, part of combinatorial set theory, a branch of mathematics, the Erdős–Rado theorem is a basic result extending Ramsey's theorem to uncountable sets. It is named after Paul Erdős and Richard Rado. [1]