When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Silicon quantum dot - Wikipedia

    en.wikipedia.org/wiki/Silicon_quantum_dot

    Typically, the size of the silicon quantum dots is defined by controlling material synthesis. For example, silicon quantum dot size can be controlled by the reaction temperature during thermal disproportionation of silsesquioxanes. [1] Similarly, the plasma residence time in non-thermal plasma methods is a key factor. [2]

  3. Quantum dot - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot

    An alternative method of quantum dot synthesis, the molecular seeding process, provides a reproducible route to the production of high-quality quantum dots in large volumes. The process utilises identical molecules of a molecular cluster compound as the nucleation sites for nanoparticle growth, thus avoiding the need for a high temperature ...

  4. Hydrogel encapsulation of quantum dots - Wikipedia

    en.wikipedia.org/wiki/Hydrogel_encapsulation_of...

    Quantum dots (QDs) are nano-scale semiconductor particles on the order of 2–10 nm in diameter. They possess electrical properties between those of bulk semi-conductors and individual molecules, as well as optical characteristics that make them suitable for applications where fluorescence is desirable, such as medical imaging.

  5. Cadmium-free quantum dot - Wikipedia

    en.wikipedia.org/wiki/Cadmium-free_quantum_dot

    Fabrication of the quantum dot LED involved a blue chip as a blue light source and a silicon resin containing the quantum dots on top of the chip creating the sample, with good results obtained from the experiment. [22] Silicon A third type of quantum dot that does not contain heavy metals is the silicon quantum dot.

  6. Graphene quantum dot - Wikipedia

    en.wikipedia.org/wiki/Graphene_quantum_dot

    Graphene quantum dots (GQDs) are graphene nanoparticles with a size less than 100 nm. Due to their exceptional properties such as low toxicity, stable photoluminescence , chemical stability and pronounced quantum confinement effect, GQDs are considered as a novel material for biological, opto-electronics, energy and environmental applications.

  7. Quantum dot solar cell - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot_solar_cell

    In a conventional solar cell light is absorbed by a semiconductor, producing an electron-hole (e-h) pair; the pair may be bound and is referred to as an exciton.This pair is separated by an internal electrochemical potential (present in p-n junctions or Schottky diodes) and the resulting flow of electrons and holes creates an electric current.

  8. Carbon nanotube quantum dot - Wikipedia

    en.wikipedia.org/wiki/Carbon_nanotube_quantum_dot

    A CNT QD is formed when electrons are confined to a small region within a carbon nanotube. This is normally accomplished by application of a voltage to a gate electrode, dragging the valence band of the CNT down in energy, thereby causing electrons to pool in a region in the vicinity of the electrode.

  9. Quantum dot single-photon source - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot_single-photon...

    Therefore, the quantum dot is an emitter of single photons. A key challenge in making a good single-photon source is to make sure that the emission from the quantum dot is collected efficiently. To do that, the quantum dot is placed in an optical cavity. The cavity can, for instance, consist of two DBRs in a micropillar (Fig. 1).