When.com Web Search

  1. Ad

    related to: differentiability in multivariable calculus

Search results

  1. Results From The WOW.Com Content Network
  2. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    Multivariable calculus is used in many fields of natural and social science and engineering to model and study high-dimensional systems that exhibit deterministic behavior. In economics , for example, consumer choice over a variety of goods, and producer choice over various inputs to use and outputs to produce, are modeled with multivariate ...

  3. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    If a function is differentiable at x 0, then all of the partial derivatives exist at x 0, and the linear map J is given by the Jacobian matrix, an n × m matrix in this case. A similar formulation of the higher-dimensional derivative is provided by the fundamental increment lemma found in single-variable calculus.

  4. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.

  5. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    In mathematics, the second partial derivative test is a method in multivariable calculus used to determine if a critical point of a function is a local minimum, maximum or saddle point. Functions of two variables

  6. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  7. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The Jacobian matrix represents the differential of f at every point where f is differentiable. In detail, if h is a displacement vector represented by a column matrix, the matrix product J(x) ⋅ h is another displacement vector, that is the best linear approximation of the change of f in a neighborhood of x, if f(x) is differentiable at x.

  8. Fundamental increment lemma - Wikipedia

    en.wikipedia.org/wiki/Fundamental_increment_lemma

    In that the existence of uniquely characterises the number ′ (), the fundamental increment lemma can be said to characterise the differentiability of single-variable functions. For this reason, a generalisation of the lemma can be used in the definition of differentiability in multivariable calculus .

  9. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    If a continuous function on an open interval (,) satisfies the equality () =for all compactly supported smooth functions on (,), then is identically zero. [1] [2]Here "smooth" may be interpreted as "infinitely differentiable", [1] but often is interpreted as "twice continuously differentiable" or "continuously differentiable" or even just "continuous", [2] since these weaker statements may be ...