When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The diagonal form for diagonalizable matrices, for instance normal matrices, is a special case of the Jordan normal form. [ 6 ] [ 7 ] [ 8 ] The Jordan normal form is named after Camille Jordan , who first stated the Jordan decomposition theorem in 1870.

  3. Jordan matrix - Wikipedia

    en.wikipedia.org/wiki/Jordan_matrix

    Let () (that is, a n × n complex matrix) and () be the change of basis matrix to the Jordan normal form of A; that is, A = C −1 JC.Now let f (z) be a holomorphic function on an open set such that ; that is, the spectrum of the matrix is contained inside the domain of holomorphy of f.

  4. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    Using generalized eigenvectors, we can obtain the Jordan normal form for and these results can be generalized to a straightforward method for computing functions of nondiagonalizable matrices. [61] See Matrix function#Jordan decomposition .)

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    The Jordan normal form and the Jordan–Chevalley decomposition. Applicable to: square matrix A; Comment: the Jordan normal form generalizes the eigendecomposition to cases where there are repeated eigenvalues and cannot be diagonalized, the Jordan–Chevalley decomposition does this without choosing a basis.

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    An example of a matrix in Jordan normal form. The grey blocks are called Jordan blocks. The eigendecomposition or diagonalization expresses A as a product VDV −1, where D is a diagonal matrix and V is a suitable invertible matrix. [52] If A can be written in this form, it is called diagonalizable.

  7. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    The rational canonical form is determined by the elementary divisors of A; these can be immediately read off from a matrix in Jordan form, but they can also be determined directly for any matrix by computing the Smith normal form, over the ring of polynomials, of the matrix (with polynomial entries) XI n − A (the same one whose determinant ...

  8. Nilpotent matrix - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_matrix

    This form is a special case of the Jordan canonical form for matrices. [7] For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix []. That is, if is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b 1, b 2 such that Nb 1 = 0 and Nb 2 = b 1

  9. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    Substituting N for z, only finitely many terms will be non-zero and S = √λ (I + a 1 N + a 2 N 2 + ⋯) gives a square root of the Jordan block with eigenvalue √λ. It suffices to check uniqueness for a Jordan block with λ = 1. The square constructed above has the form S = I + L where L is polynomial in N without constant term.