Search results
Results From The WOW.Com Content Network
Chains are often narrower than belts, and this can make it easier to shift them to larger or smaller gears in order to vary the gear ratio. Multi-speed bicycles with derailleurs make use of this. Also, the more positive meshing of a chain can make it easier to build gears that can increase or shrink in diameter, again altering the gear ratio.
Gear inches is one way of measuring the gear ratio(s) of a bicycle, so that different gears and different bicycles can be compared in a consistent manner. Gear inches is an imperial measure corresponding to the diameter in inches of the drive wheel of a penny-farthing bicycle with equivalent ( direct-drive ) gearing.
The speed ratio for a pair of meshing gears can be computed from ratio of the radii of the pitch circles and the ratio of the number of teeth on each gear, its gear ratio. Two meshing gears transmit rotational motion. The velocity v of the point of contact on the pitch circles is the same on both gears, and is given by
Crawl ratio is a term used in the automotive world to describe the highest gear ratio that a vehicle is capable of. Note that gear ratio, also known as speed ratio, of a gear train is defined as the ratio of the angular velocity of the input gear to the angular velocity of the output gear, and thus a higher gear ratio implies a larger speed reduction, i.e. the input speed is reduced more at ...
Worm-and-gear sets are a simple and compact way to achieve a high torque, low speed gear ratio. For example, helical gears are normally limited to gear ratios of less than 10:1 while worm-and-gear sets vary from 10:1 to 500:1. [45] A disadvantage is the potential for considerable sliding action, leading to low efficiency. [46]
A gear train or gear set is a machine element of a mechanical system formed by mounting two or more gears on a frame such that the teeth of the gears engage.. Gear teeth are designed to ensure the pitch circles of engaging gears roll on each other without slipping, providing a smooth transmission of rotation from one gear to the next. [2]
The final drive gear ratio can be calculated by dividing the number of teeth on the rear sprocket by the number of teeth on the counter-shaft sprocket. With respect to the stock gearing on a motorcycle, installing a smaller counter-shaft sprocket (fewer teeth), or a larger rear sprocket (more teeth), produces a lower gear ratio, which increases ...
The gearbox was designed so that, for efficiency, the fastest ratio would be a "direct-drive" or "straight-through" 1:1 ratio, avoiding frictional losses in the gears. Achieving an overdriven ratio for cruising thus required a gearbox ratio even higher than this, i.e. the gearbox output shaft rotating faster than the engine.