When.com Web Search

  1. Ads

    related to: area of trapezium worksheet pdf class 10 fbise maths notes

Search results

  1. Results From The WOW.Com Content Network
  2. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    A set of sides that can form a cyclic quadrilateral can be arranged in any of three distinct sequences each of which can form a cyclic quadrilateral of the same area in the same circumcircle (the areas being the same according to Brahmagupta's area formula). Any two of these cyclic quadrilaterals have one diagonal length in common. [17]: p. 84

  3. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    The area of an isosceles (or any) trapezoid is equal to the average of the lengths of the base and top (the parallel sides) times the height. In the adjacent diagram, if we write AD = a , and BC = b , and the height h is the length of a line segment between AD and BC that is perpendicular to them, then the area K is

  4. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    In geometry, a trapezoid (/ ˈ t r æ p ə z ɔɪ d /) in North American English, or trapezium (/ t r ə ˈ p iː z i ə m /) in British English, [1] [2] is a quadrilateral that has at least one pair of parallel sides.

  5. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  6. Tangential trapezoid - Wikipedia

    en.wikipedia.org/wiki/Tangential_trapezoid

    The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)

  7. Trapezoid graph - Wikipedia

    en.wikipedia.org/wiki/Trapezoid_graph

    For this larger class of graphs, the maximum independent set and the minimum clique cover problem can be solved in (⁡) time. [5] Dagan et al. first proposed an O ( n k ) {\displaystyle {O}(nk)} algorithm for coloring trapezoid graphs, where n is the number of nodes and k is the chromatic number of the graph.

  8. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Alternatively, the area can be calculated by dividing the kite into two congruent triangles and applying the SAS formula for their area. If a {\displaystyle a} and b {\displaystyle b} are the lengths of two sides of the kite, and θ {\displaystyle \theta } is the angle between, then the area is [ 26 ] A = a b ⋅ sin ⁡ θ . {\displaystyle ...