When.com Web Search

  1. Ad

    related to: wave amplitude calculator for physics definition science lab experiment

Search results

  1. Results From The WOW.Com Content Network
  2. Melde's experiment - Wikipedia

    en.wikipedia.org/wiki/Melde's_experiment

    Melde's experiment is a scientific experiment carried out in 1859 by the German physicist Franz Melde on the standing waves produced in a tense cable originally set oscillating by a tuning fork, later improved with connection to an electric vibrator.

  3. Born rule - Wikipedia

    en.wikipedia.org/wiki/Born_rule

    The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a given position is proportional to the square of the amplitude of the system's wavefunction at that position.

  4. Arago spot - Wikipedia

    en.wikipedia.org/wiki/Arago_spot

    Notation for calculating the wave amplitude at point P 1 from a spherical point source at P 0.. At the heart of Fresnel's wave theory is the Huygens–Fresnel principle, which states that every unobstructed point of a wavefront becomes the source of a secondary spherical wavelet and that the amplitude of the optical field E at a point on the screen is given by the superposition of all those ...

  5. String vibration - Wikipedia

    en.wikipedia.org/wiki/String_vibration

    Vibration, standing waves in a string. The fundamental and the first 5 overtones in the harmonic series. A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone.

  6. Wave interference - Wikipedia

    en.wikipedia.org/wiki/Wave_interference

    The above can be demonstrated in one dimension by deriving the formula for the sum of two waves. The equation for the amplitude of a sinusoidal wave traveling to the right along the x-axis is (,) = ⁡ where is the peak amplitude, = / is the wavenumber and = is the angular frequency of the wave.

  7. Hanbury Brown and Twiss effect - Wikipedia

    en.wikipedia.org/wiki/Hanbury_Brown_and_Twiss_effect

    HBT effects can generally be attributed to the wave–particle duality of the beam, and the results of a given experiment depend on whether the beam is composed of fermions or bosons. Devices which use the effect are commonly called intensity interferometers and were originally used in astronomy , although they are also heavily used in the ...

  8. Node (physics) - Wikipedia

    en.wikipedia.org/wiki/Node_(physics)

    In this type the derivative (slope) of the wave's amplitude (in sound waves the pressure, in electromagnetic waves, the current) is forced to zero at the boundary. So there is an amplitude maximum (antinode) at the boundary, the first node occurs a quarter wavelength from the end, and the other nodes are at half wavelength intervals from there:

  9. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...