Search results
Results From The WOW.Com Content Network
Simpson's rules are a set of rules used in ship stability and naval architecture, to calculate the areas and volumes of irregular figures. [1] This is an application of Simpson's rule for finding the values of an integral, here interpreted as the area under a curve.
This can also be seen from the geometric picture: the trapezoids include all of the area under the curve and extend over it. Similarly, a concave-down function yields an underestimate because area is unaccounted for under the curve, but none is counted above. If the interval of the integral being approximated includes an inflection point, the ...
The area under the effect curve (AUEC) is an integral of the effect of a drug over time, estimated as a previously-established function of concentration. It was proposed to be used instead of AUC in animal-to-human dose translation, as computer simulation shows that it could cope better with half-life and dosing schedule variations than AUC.
This method was further developed and employed by Archimedes in the 3rd century BC and used to calculate the area of a circle, the surface area and volume of a sphere, area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a ...
This probability is given by the integral of this variable's PDF over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range. The probability density function is nonnegative everywhere, and the area under the entire curve is equal to 1.
The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere. The area of a segment of the parabola cut from it by a straight line is 4/3 the area of the triangle inscribed in this segment. For the proof of the results Archimedes used the Method of exhaustion of Eudoxus.
The main criticism to the ROC curve described in these studies regards the incorporation of areas with low sensitivity and low specificity (both lower than 0.5) for the calculation of the total area under the curve (AUC)., [19] as described in the plot on the right.
There are continuous curves on which every arc (other than a single-point arc) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0.