Search results
Results From The WOW.Com Content Network
dplyr is an R package whose set of functions are designed to enable dataframe (a spreadsheet-like data structure) manipulation in an intuitive, user-friendly way. It is one of the core packages of the popular tidyverse set of packages in the R programming language. [1]
tidyr – help transform data specifically into tidy data, where each variable is a column, each observation is a row; each row is an observation, and each value is a cell. readr – help read in common delimited, text files with data; purrr – a functional programming toolkit; tibble – a modern implementation of the built-in data frame data ...
R is a programming language for statistical computing and data visualization.It has been adopted in the fields of data mining, bioinformatics and data analysis. [9]The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data.
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
RStudio IDE (or RStudio) is an integrated development environment for R, a programming language for statistical computing and graphics. It is available in two formats: RStudio Desktop is a regular desktop application while RStudio Server runs on a remote server and allows accessing RStudio using a web browser .
To insert an object, the tree is traversed recursively from the root node. At each step, all rectangles in the current directory node are examined, and a candidate is chosen using a heuristic such as choosing the rectangle which requires least enlargement. The search then descends into this page, until reaching a leaf node.
The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).
In SQL procedures, a cursor makes it possible to define a result set (a set of data rows) and perform complex logic on a row by row basis. By using the same mechanics, a SQL procedure can also define a result set and return it directly to the caller of the SQL procedure or to a client application.