Search results
Results From The WOW.Com Content Network
The orbit of Eris (blue) compared to those of Saturn, Uranus, Neptune, and Pluto (white/gray). The arcs below the ecliptic are plotted in darker colors, and the red dot is the Sun. The diagram on the left is a polar view whereas the diagrams on the right are different views from the ecliptic.
Dysnomia (formally (136199) Eris I Dysnomia) is the only known moon of the dwarf planet Eris and is the second-largest known moon of a dwarf planet, after Pluto I Charon.It was discovered in September 2005 by Mike Brown and the Laser Guide Star Adaptive Optics (LGSAO) team at the W. M. Keck Observatory.
I would like a picture with the orbit of UB 313; it should have the year and distance in AU in the perihelion and the aphelion of the orbit, for information purposes; the current position would also be nice.
The upper diagram shows Ceres's orbit from top down. The bottom diagram is a side view showing Ceres's orbital inclination to the ecliptic. Lighter shades indicate above the ecliptic; darker indicate below. Ceres follows an orbit between Mars and Jupiter, near the middle of the asteroid belt, with an orbital period (year) of 4.6 Earth years. [2]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Diagram of generic quasi-satellite orbit. A quasi-satellite is an object in a specific type of co-orbital configuration (1:1 orbital resonance) with a planet (or dwarf planet) where the object stays close to that planet over many orbital periods.
Sketch of a circumlunar free return trajectory (not to scale), plotted on the rotating reference frame rotating with the moon. (Moon's motion only shown for clarity) In orbital mechanics, a free-return trajectory is a trajectory of a spacecraft traveling away from a primary body (for example, the Earth) where gravity due to a secondary body (for example, the Moon) causes the spacecraft to ...
(Translation: 'The major planets orbit, therefore, in ellipses having a focus at the center of the Sun, and with their radii (vectores) drawn to the Sun describe areas proportional to the times, altogether (Latin: 'omnino') as Kepler supposed.') (This conclusion is reached after taking as initial fact the observed proportionality between square ...