When.com Web Search

  1. Ads

    related to: towards data science machine learning with python

Search results

  1. Results From The WOW.Com Content Network
  2. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  3. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).

  4. QLattice - Wikipedia

    en.wikipedia.org/wiki/QLattice

    The QLattice works with data in categorical and numeric format. It allows the user to quickly generate, plot and inspect mathematical formulae that can potentially explain the generating process of the data. It is designed for easy interaction with the researcher, allowing the user to guide the search based on their preexisting knowledge. [2] [6]

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  6. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Ensemble learning, including both regression and classification tasks, can be explained using a geometric framework. [15] Within this framework, the output of each individual classifier or regressor for the entire dataset can be viewed as a point in a multi-dimensional space.

  7. Anaconda (Python distribution) - Wikipedia

    en.wikipedia.org/wiki/Anaconda_(Python_distribution)

    Anaconda is a distribution of the Python and R programming languages for scientific computing (data science, machine learning applications, large-scale data processing, predictive analytics, etc.), that aims to simplify package management and deployment. Anaconda distribution includes data-science packages suitable for Windows, Linux, and macOS ...