When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. [1] In a polygon, an edge is a line segment on the boundary, [2] and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides ...

  3. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]

  4. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3 ...

  5. Multiple edges - Wikipedia

    en.wikipedia.org/wiki/Multiple_edges

    Multiple edges joining two vertices. In graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and ...

  6. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  7. Hypergraph - Wikipedia

    en.wikipedia.org/wiki/Hypergraph

    The definition above generalizes from a directed graph to a directed hypergraph by defining the head or tail of each edge as a set of vertices (or ) rather than as a single vertex. A graph is then the special case where each of these sets contains only one element.

  8. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Under this definition, multiple edges, in which two or more edges connect the same vertices, are not allowed. Example of an undirected multigraph with 3 vertices, 3 edges and 4 loops. For vertices A,B,C and D, the degrees are respectively 4,4,5,1

  9. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    An edge that connects vertices x and y is sometimes written xy. edge cut A set of edge s whose removal disconnects the graph. A one-edge cut is called a bridge, isthmus, or cut edge. edge set The set of edges of a given graph G, sometimes denoted by E(G). edgeless graph