Search results
Results From The WOW.Com Content Network
Friction can have dramatic consequences, as illustrated by the use of friction created by rubbing pieces of wood together to start a fire. Another important consequence of many types of friction can be wear, which may lead to performance degradation or damage to components. It is known that frictional energy losses account for about 20% of the ...
Friction-fighters create new rituals to ensure the opposite. Have teams identify wasted effort, pointless practices, and unnecessary impediments to action and systematically remove them. Beware of ...
Frictional contact mechanics emphasizes the effect of friction forces. Contact mechanics is part of mechanical engineering . The physical and mathematical formulation of the subject is built upon the mechanics of materials and continuum mechanics and focuses on computations involving elastic , viscoelastic , and plastic bodies in static or ...
As for friction, it is a result of both microscopic adhesion and chemical bond formation due to the electromagnetic force, and of microscopic structures stressing into each other; [3] in the latter phenomena, in order to allow motion, the microscopic structures must either slide one above the other, or must acquire enough energy to break one ...
[1] [2] This can be divided into compressive and adhesive forces in the direction perpendicular to the interface, and frictional forces in the tangential direction. Frictional contact mechanics is the study of the deformation of bodies in the presence of frictional effects, whereas frictionless contact mechanics assumes the absence of such effects.
Mechanical advantage that is computed using the assumption that no power is lost through deflection, friction and wear of a machine is the maximum performance that can be achieved. For this reason, it is often called the ideal mechanical advantage (IMA). In operation, deflection, friction and wear will reduce the mechanical advantage.
Friction welding (FWR) is a solid-state welding and bonding process that generates heat through mechanical friction between workpieces in relative motion to one another. The process is used with the addition of a lateral force called "upset" to plastically displace and fuse the materials. [1]
Ball bearings are an example of an attempt to minimize the friction torque. [2] Friction torque can also be an asset in engineering. Bolts and nuts, or screws are often designed to be fastened with a given amount of torque, where the friction is adequate during use or operation for the bolt, nut, or screw to remain safely fastened.