Ads
related to: data mining in accounting
Search results
Results From The WOW.Com Content Network
The actual data mining task is the semi-automatic or automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining, sequential pattern mining).
Metabolomics is a very data heavy subject, and often involves sifting through massive amounts of irrelevant data before finding any conclusions. Data mining has allowed this relatively new field of medical research to grow considerably within the last decade, and will likely be the method of which new research is found within the subject. [28]
Fraud detection is a knowledge-intensive activity. The main AI techniques used for fraud detection include: . Data mining to classify, cluster, and segment the data and automatically find associations and rules in the data that may signify interesting patterns, including those related to fraud.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
The objective of these models is to assess the possibility that a unit in another sample will display the same pattern. Predictive model solutions can be considered a type of data mining technology. The models can analyze both historical and current data and generate a model in order to predict potential future outcomes. [14]
The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions, and subsequent data mining processes will benefit from the experiences of previous ones.
S&P 500 Shiller CAPE Ratio data by YCharts.. As of the closing bell on Feb. 6, the S&P 500's Shiller P/E clocked in at a reading of 38.37, which is just shy of its closing high of 38.89 for the ...
An operational data store (ODS) is used for operational reporting and as a source of data for the enterprise data warehouse (EDW). It is a complementary element to an EDW in a decision support environment, and is used for operational reporting, controls, and decision making, as opposed to the EDW, which is used for tactical and strategic decision support.