Ad
related to: deadlock recovery techniques
Search results
Results From The WOW.Com Content Network
In computer science, deadlock prevention algorithms are used in concurrent programming when multiple processes must acquire more than one shared resource.If two or more concurrent processes obtain multiple resources indiscriminately, a situation can occur where each process has a resource needed by another process.
When the recovery coordinator takes over after the coordinator failed during a commit phase of two-phase commit, the new pre-commit comes handy as follows: On querying participants, if it learns that some nodes are in commit phase then it assumes that the previous coordinator before crashing has made the decision to commit. Hence it can ...
Phantom deadlocks are deadlocks that are falsely detected in a distributed system due to system internal delays but do not actually exist. For example, if a process releases a resource R1 and issues a request for R2 , and the first message is lost or delayed, a coordinator (detector of deadlocks) could falsely conclude a deadlock (if the ...
Although using the ostrich algorithm is one of the methods of dealing with deadlocks, other effective methods exist such as dynamic avoidance, banker's algorithm, detection and recovery, and prevention. [3]
In operating systems, feedback vertex sets play a prominent role in the study of deadlock recovery. In the wait-for graph of an operating system, each directed cycle corresponds to a deadlock situation. In order to resolve all deadlocks, some blocked processes have to be aborted.
To accommodate recovery from failure (automatic in most cases) the protocol's participants use logging of the protocol's states. Log records, which are typically slow to generate but survive failures, are used by the protocol's recovery procedures. Many protocol variants exist that primarily differ in logging strategies and recovery mechanisms.
Deadlock commonly refers to: Deadlock (locksmithing) or deadbolt, a physical door locking mechanism; Deadlock (computer science), a situation where two processes are each waiting for the other to finish; Political deadlock or gridlock, a situation of difficulty passing laws that satisfy the needs of the people
Banker's algorithm is a resource allocation and deadlock avoidance algorithm developed by Edsger Dijkstra that tests for safety by simulating the allocation of predetermined maximum possible amounts of all resources, and then makes an "s-state" check to test for possible deadlock conditions for all other pending activities, before deciding whether allocation should be allowed to continue.