Search results
Results From The WOW.Com Content Network
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q). It may also be ...
The form of a modus tollens argument is a mixed hypothetical syllogism, with two premises and a conclusion: If P, then Q. Not Q. Therefore, not P. The first premise is a conditional ("if-then") claim, such as P implies Q. The second premise is an assertion that Q, the consequent of the conditional claim, is not the
In propositional logic, modus ponens (/ ˈ m oʊ d ə s ˈ p oʊ n ɛ n z /; MP), also known as modus ponendo ponens (from Latin 'mode that by affirming affirms'), [1] implication elimination, or affirming the antecedent, [2] is a deductive argument form and rule of inference. [3] It can be summarized as "P implies Q. P is true. Therefore, Q ...
It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [4] [1] or sometimes zeroth-order logic. [ b ] [ 6 ] [ 7 ] [ 8 ] Sometimes, it is called first-order propositional logic [ 9 ] to contrast it with System F , but it should not be confused with first-order logic .
The material conditional (also known as material implication) is an operation commonly used in logic.When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false.
In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce.It was taken as an axiom in his first axiomatisation of propositional logic.It can be thought of as the law of excluded middle written in a form that involves only one sort of connective, namely implication.
In the abstract (ideal) case the simplest oscillating formula is a NOT fed back to itself: ~(~(p=q)) = q. Analysis of an abstract (ideal) propositional formula in a truth-table reveals an inconsistency for both p=1 and p=0 cases: When p=1, q=0, this cannot be because p=q; ditto for when p=0 and q=1.
These are often denoted by uppercase letters such as P, Q and R. Examples: In P(x), P is a predicate symbol of valence 1. One possible interpretation is "x is a man". In Q(x,y), Q is a predicate symbol of valence 2. Possible interpretations include "x is greater than y" and "x is the father of y".