Search results
Results From The WOW.Com Content Network
Megavoltage X-rays are produced by linear accelerators ("linacs") operating at voltages in excess of 1000 kV (1 MV) range, and therefore have an energy in the MeV range. The voltage in this case refers to the voltage used to accelerate electrons in the linear accelerator and indicates the maximum possible energy of the photons which are subsequently produced. [1]
The photo-absorption strongly depends on the atomic number of the material and the X-ray energy. Several centimeter thick volumes can be accessed in steel and millimeters in lead containing samples. No radiation damage of the sample, which can pin incommensurations or destroy the chemical compound to be analyzed.
LIGA consists of three main processing steps: lithography, electroplating, and molding. There are two main LIGA-fabrication technologies: X-Ray LIGA, which uses X-rays produced by a synchrotron to create high-aspect-ratio structures, and UV LIGA, a more accessible method which uses ultraviolet light to create structures with relatively low aspect ratios.
Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object.Applications of radiography include medical ("diagnostic" radiography and "therapeutic radiography") and industrial radiography.
X-ray optics is the branch of optics dealing with X-rays, rather than visible light.It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction, X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.
Therefore beginning in the 1920s "orthovoltage" 200–500 kV X-ray machines were built. [8] These were found to be able to reach shallow tumors, but to treat tumors deep in the body more voltage was needed. By the 1930s and 1940s megavoltage X-rays produced by huge machines with 3–5 million volts on the tube, began to be employed.
Line beam scanner. Line beam scanning is the traditional process of industrial CT scanning. [3] X-rays are produced and the beam is collimated to create a line. The X-ray line beam is then translated across the part and data is collected by the detector. The data is then reconstructed to create a 3-D volume rendering of the part.
It is named after Paul Kirkpatrick and Albert Baez, the inventors of the X-ray microscope. [1] Although X-rays can be focused by compound refractive lenses, these also reduce the intensity of the beam and are therefore undesirable. KB mirrors, on the other hand, can focus beams to small spot sizes with minimal loss of intensity.