Ads
related to: root 3 decimal expansion symbol math word search worksheets christmas
Search results
Results From The WOW.Com Content Network
The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality. [citation needed] In 2013, its numerical value in decimal notation was computed to ten billion digits. [1] Its decimal expansion, written here to 65 decimal places, is given by OEIS: A002194:
The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.
The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
For most symbols, the entry name is the corresponding Unicode symbol. So, for searching the entry of a symbol, it suffices to type or copy the Unicode symbol into the search textbox. Similarly, when possible, the entry name of a symbol is also an anchor, which allows linking easily from another Wikipedia article. When an entry name contains ...
In 1637 Descartes was the first to unite the German radical sign √ with the vinculum to create the radical symbol in common use today. [8] The symbol used to indicate a vinculum need not be a line segment (overline or underline); sometimes braces can be used (pointing either up or down). [9]
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
Moreover, in the standard decimal representation of , an infinite sequence of trailing 0's appearing after the decimal point is omitted, along with the decimal point itself if is an integer. Certain procedures for constructing the decimal expansion of x {\displaystyle x} will avoid the problem of trailing 9's.