Search results
Results From The WOW.Com Content Network
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
As mentioned in § Generating the lookup table, CRC tables have the property that table[i xor j] = table[i] xor table[j]. We can use this identity to replace the large table by two 256-entry tables: table[i + 256 × j] = table_low[i] xor table_high[j].
The algorithms also include a jump function, which sets the state forward by some number of steps – usually a power of two that allows many threads of execution to start at distinct initial states. For 32-bit output, xoshiro128** and xoshiro128+ are exactly equivalent to xoshiro256** and xoshiro256+, with uint32_t in place of uint64_t , and ...
In simple threshold-activated artificial neural networks, modeling the XOR function requires a second layer because XOR is not a linearly separable function. Similarly, XOR can be used in generating entropy pools for hardware random number generators. The XOR operation preserves randomness, meaning that a random bit XORed with a non-random bit ...
Bitwise XOR of 4-bit integers. A bitwise XOR is a binary operation that takes two bit patterns of equal length and performs the logical exclusive OR operation on each pair of corresponding bits. The result in each position is 1 if only one of the bits is 1, but will be 0 if both are 0 or both are 1.
In Boolean algebra, a parity function is a Boolean function whose value is one if and only if the input vector has an odd number of ones. The parity function of two inputs is also known as the XOR function. The parity function is notable for its role in theoretical investigation of circuit complexity of Boolean functions.
The same fact can be stated as the indicator function (denoted here by ) of the symmetric difference, being the XOR (or addition mod 2) of the indicator functions of its two arguments: () = or using the Iverson bracket notation [] = [] [].
Putting a formula into ANF also makes it easy to identify linear functions (used, for example, in linear-feedback shift registers): a linear function is one that is a sum of single literals. Properties of nonlinear-feedback shift registers can also be deduced from certain properties of the feedback function in ANF.