Search results
Results From The WOW.Com Content Network
In graph theory, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. [ 1 ]
In more colloquial terms, in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands; for this reason, the result is known as the handshaking lemma. To prove this by double counting, let () be the degree of vertex . The number of vertex-edge incidences in the graph may be ...
A trivial example. In mathematics, the mountain climbing problem is a mathematical problem that considers a two-dimensional mountain range (represented as a continuous function), and asks whether it is possible for two mountain climbers starting at sea level on the left and right sides of the mountain to meet at the summit, while maintaining equal altitudes at all times.
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem " or an "auxiliary theorem".
Similarly, the hypergraph counting lemma is a generalization of the graph counting lemma that estimates number of copies of a fixed graph as a subgraph of a larger graph. There are several distinct formulations of the method, all of which imply the hypergraph removal lemma and a number of other powerful results, such as Szemerédi's theorem ...
For example, of three gloves, at least two must be right-handed or at least two must be left-handed, because there are three objects but only two categories of handedness to put them into. This seemingly obvious statement, a type of counting argument , can be used to demonstrate possibly unexpected results.
The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".
In mathematics, Grönwall's inequality (also called Grönwall's lemma or the Grönwall–Bellman inequality) allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an ...