Search results
Results From The WOW.Com Content Network
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
For example, for the family of quadratic functions having the general form = + +, the simplest function is =, and every quadratic may be converted to that form by translations and dilations, which may be seen by completing the square. This is therefore the parent function of the family of quadratic equations.
To complete the square, form a squared binomial on the left-hand side of a quadratic equation, from which the solution can be found by taking the square root of both sides. The standard way to derive the quadratic formula is to apply the method of completing the square to the generic quadratic equation a x 2 + b x + c = 0 {\displaystyle ...
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
In college mathematics exercises often depend on functions of a real variable or application of theorems. The standard exercises of calculus involve finding derivatives and integrals of specified functions. Usually instructors prepare students with worked examples: the exercise is stated, then a model answer is provided. Often several worked ...
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...
The title of the book has been translated in a wide variety of ways. In 1852, Alexander Wylie referred to it as Arithmetical Rules of the Nine Sections. With only a slight variation, the Japanese historian of mathematics Yoshio Mikami shortened the title to Arithmetic in Nine Sections.
Babylonian mathematics is a range of numeric and more advanced mathematical practices in the ancient Near East, written in cuneiform script.Study has historically focused on the First Babylonian dynasty old Babylonian period in the early second millennium BC due to the wealth of data available.