Search results
Results From The WOW.Com Content Network
For examples of this specification-method applied to the addition algorithm "m+n" see Algorithm examples. An example in Boolos-Burgess-Jeffrey (2002) (pp. 31–32) demonstrates the precision required in a complete specification of an algorithm, in this case to add two numbers: m+n. It is similar to the Stone requirements above.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
There are several broadly recognized algorithmic techniques that offer a proven method or process for designing and constructing algorithms. Different techniques may be used depending on the objective, which may include searching, sorting, mathematical optimization, constraint satisfaction, categorization, analysis, and prediction.
Methods have been developed for the analysis of algorithms to obtain such quantitative answers (estimates); for example, an algorithm that adds up the elements of a list of n numbers would have a time requirement of , using big O notation. The algorithm only needs to remember two values: the sum of all the elements so far, and its ...
Take as an example a program that looks up a specific entry in a sorted list of size n. Suppose this program were implemented on Computer A, a state-of-the-art machine, using a linear search algorithm, and on Computer B, a much slower machine, using a binary search algorithm .
For example, the best case for a simple linear search on a list occurs when the desired element is the first element of the list. Development and choice of algorithms is rarely based on best-case performance: most academic and commercial enterprises are more interested in improving average-case complexity and worst-case performance. Algorithms ...
Chambolle-Pock algorithm; Column generation; Communication-avoiding algorithm; Compact quasi-Newton representation; Consensus based optimization; Constructive heuristic; Crew scheduling; Criss-cross algorithm; Critical line method; Cross-entropy method; Cunningham's rule; Cutting-plane method
Pseudocode is commonly used in textbooks and scientific publications related to computer science and numerical computation to describe algorithms in a way that is accessible to programmers regardless of their familiarity with specific programming languages. Textbooks often include an introduction explaining the conventions in use, and the ...