Search results
Results From The WOW.Com Content Network
A valid number sentence that is true: 83 + 19 = 102. A valid number sentence that is false: 1 + 1 = 3. A valid number sentence using a 'less than' symbol: 3 + 6 < 10. A valid number sentence using a 'more than' symbol: 3 + 9 > 11. An example from a lesson plan: [6] Some students will use a direct computational approach.
The English language has a number of words that denote specific or approximate quantities that are themselves not numbers. [1] Along with numerals, and special-purpose words like some, any, much, more, every, and all, they are quantifiers. Quantifiers are a kind of determiner and occur in many constructions with other determiners, like articles ...
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
For example, 11 can be 2-split into 2+9, 3+8, 4+7, and 5+6. The respective products are 18, 24, 28, and 30 and the players put a tick mark beside each of these products in their tables (Table 1). When they are done, some numbers have no tick marks, some have one, and some have more than one. Sue now looks at her sum and all its 2-splits.
Some Greek mathematicians treated the number 1 differently than larger numbers, sometimes even not as a number at all. [c] Euclid, for example, defined a unit first and then a number as a multitude of units, thus by his definition, a unit is not a number and there are no unique numbers (e.g., any two units from indefinitely many units is a 2). [17]
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
The two smallest consecutive powerful numbers are 8 and 9. Since Pell's equation x 2 − 8y 2 = 1 has infinitely many integral solutions, there are infinitely many pairs of consecutive powerful numbers (Golomb, 1970); more generally, one can find consecutive powerful numbers by solving a similar Pell equation x 2 − ny 2 = ±1 for any perfect ...