When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kaprekar's routine - Wikipedia

    en.wikipedia.org/wiki/Kaprekar's_routine

    Furthermore, it is clear that even-digits with greater than or equal to 8, [10] and with 9 digits, [11] or odd-digits with greater than or equal to 15 digits [12] have multiple solutions. Although 11-digit and 13-digit numbers have only one solution, it forms a loop of five numbers and a loop of two numbers, respectively. [13]

  3. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...

  4. 6174 - Wikipedia

    en.wikipedia.org/wiki/6174

    6174 is a 7-smooth number, i.e. none of its prime factors are greater than 7. 6174 can be written as the sum of the first three powers of 18: 18 3 + 18 2 + 18 1 = 5832 + 324 + 18 = 6174, and coincidentally, 6 + 1 + 7 + 4 = 18. The sum of squares of the prime factors of 6174 is a square: 2 2 + 3 2 + 3 2 + 7 2 + 7 2 + 7 2 = 4 + 9 + 9 + 49 + 49 ...

  5. Self-descriptive number - Wikipedia

    en.wikipedia.org/wiki/Self-descriptive_number

    There are no self-descriptive numbers in bases 2, 3 or 6. In bases 7 and greater, there is exactly one self-descriptive number: () + + +, which has b−4 instances of the digit 0, two instances of the digit 1, one instance of the digit 2, one instance of digit b – 4, and no instances of any other digits.

  6. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers. constants: Limit = 1000 % Sufficient digits.

  7. Luhn algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_algorithm

    If doubling a digit results in a value > 9, subtract 9 from it (or sum its digits). Sum all the resulting digits (including the ones that were not doubled). The check digit is calculated by (()), where s is the sum from step 3. This is the smallest number (possibly zero) that must be added to to make a multiple of 10.

  8. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion can be used to prove that if an integer is a perfect cube, then it must be either a multiple of 9, 1 more than a multiple of 9, or 1 less than a multiple of 9. [3] Proof: Each perfect cube is the cube of some integer n, where n is either a multiple of 3, 1 more than a multiple of 3, or 1 less than a multiple of 3. So these ...

  9. Casting out nines - Wikipedia

    en.wikipedia.org/wiki/Casting_out_nines

    The number 12565, for instance, has digit sum 1+2+5+6+5 = 19, which, in turn, has digit sum 1+9=10, which, in its turn has digit sum 1+0=1, a single-digit number. The digital root of 12565 is therefore 1, and its computation has the effect of casting out (12565 - 1)/9 = 1396 lots of 9 from 12565.

  1. Related searches python all 6 digit numbers are a multiple of 9 and 12 and 4 is 1 game engine

    number of digits in ordernumber sequence of digits