Search results
Results From The WOW.Com Content Network
The autophagic process is divided into five distinct stages: Initiation, phagophore nucleation, autophagosomal formation (elongation), autophagosome-lysosome fusion (autophagolysosome) and cargo degradation. [1] An autophagosome is a spherical structure with double layer membranes. [2]
Autophagy-related protein 8 (Atg8) is a ubiquitin-like protein required for the formation of autophagosomal membranes. The transient conjugation of Atg8 to the autophagosomal membrane through a ubiquitin-like conjugation system is essential for autophagy in eukaryotes.
The FIP200 cis-Golgi-derived membranes fuse with ATG16L1-positive endosomal membranes to form the prophagophore termed HyPAS (hybrid pre-autophagosomal structure). [66] ATG16L1 binding to WIPI2 [67] mediates ATG16L1's activity. This leads to downstream conversion of prophagophore into ATG8-positive phagophore [66] via a ubiquitin-like ...
The latest findings form Dr. Deretic's laboratory show that atg8ylation and mATG8s play a role in recruiting ESCRT machinery to seal open phagophores, thus generating double membrane autophagosomes, [13] and to maintain autophagosomal membranes in a sealed and impermeable, i.e. nonporous state so that digestion of the captured material can take ...
MAP1LC3B is a member of the highly conserved ATG8 protein family. ATG8 proteins are present in all known eukaryotic organisms. The animal ATG8 family comprises three subfamilies: (i) microtubule-associated protein 1 light chain 3 (MAP1LC3); (ii) Golgi-associated ATPase enhancer of 16 kDa (GATE-16); and (iii) γ-amino-butyric acid receptor-associate protein ().
Further, the quality of autophagosomal membranes, such as membrane permeability, are adversely affected. [15] The known effects of atg8ylation on autophagosomal membranes include membrane remodeling, kinetic effects, selective cargo sequestration into autophagosomes, and effects on autophagosome-lysosome fusion. [16]
[7] [8] The sequence associates with the ubiquitin- proteasome system, UPS, required for the unique development of an autophagosomal membrane and fusion within cells. [9] ATG7 was identified based on homology to yeast cells Pichia pastoris GSA7 and Saccharomyces cerevisiae APG7. The protein appears to be required for fusion of peroxisomal and ...
Omegasomes display significant functional roles in different biochemical pathways which assist in various autophagosome processes. Omegasomes attract the effectors needed to target PI3P, while also ensuring that the autophagosomal membranes fuse with the double membrane vesicles and promote autophagosome formation. [4]