When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The Lebesgue criterion for integrability states that a bounded function is Riemann integrable if and only if the set of all discontinuities has measure zero. [5] Every countable subset of the real numbers - such as the rational numbers - has measure zero, so the above discussion shows that Thomae's function is Riemann integrable on any interval.

  4. Riemann problem - Wikipedia

    en.wikipedia.org/wiki/Riemann_problem

    A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest.

  5. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]

  6. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  7. Regression discontinuity design - Wikipedia

    en.wikipedia.org/wiki/Regression_discontinuity...

    For example, suppose the treatment is passing an exam, where a grade of 50% is required. In this case, this example is a valid regression discontinuity design so long as grades are somewhat random, due either to the randomness of grading or randomness of student performance.

  8. Oscillation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Oscillation_(mathematics)

    For example, in the classification of discontinuities: in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides);

  9. Branch point - Wikipedia

    en.wikipedia.org/wiki/Branch_point

    For example, the function w = z 1/2 has two branches: one where the square root comes in with a plus sign, and the other with a minus sign. A branch cut is a curve in the complex plane such that it is possible to define a single analytic branch of a multi-valued function on the plane minus that curve.