Search results
Results From The WOW.Com Content Network
An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}
Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….
If =, the region is known as the punctured disk (a disk with a point hole in the center) of radius R around the point a. As a subset of the complex plane, an annulus can be considered as a Riemann surface. The complex structure of an annulus depends only on the ratio r / R .
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
Thin cylindrical shell with open ends, of radius r and mass m. = [1] The expression ″thin″ indicates that the shell thickness is negligible. It is a special case of the thick-walled cylindrical tube of the same mass for r 1 = r 2. Solid cylinder of radius r, height h and mass m.
Command prompt of Windows XP showing volume label and volume serial number of drive C:. In this example, if a volume label was not set, "has no label." would be shown in place of "is 0320NS 13". A volume label is the name given to a specific volume in a filesystem.
A spherical Gaussian surface is used when finding the electric field or the flux produced by any of the following: [3] a point charge; a uniformly distributed spherical shell of charge; any other charge distribution with spherical symmetry; The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
The shell method goes as follows: Consider a volume in three dimensions obtained by rotating a cross-section in the xy-plane around the y-axis. Suppose the cross-section is defined by the graph of the positive function f(x) on the interval [a, b]. Then the formula for the volume will be: ()