When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    The most general proper Lorentz transformation Λ(v, θ) includes a boost and rotation together, and is a nonsymmetric matrix. As special cases, Λ(0, θ) = R(θ) and Λ(v, 0) = B(v). An explicit form of the general Lorentz transformation is cumbersome to write down and will not be given here.

  3. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.

  4. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    (The improper Lorentz transformations have determinant −1.) The subgroup of proper Lorentz transformations is denoted SO(1, 3). The subgroup of all Lorentz transformations preserving both orientation and direction of time is called the proper, orthochronous Lorentz group or restricted Lorentz group, and is denoted by SO + (1, 3). [a]

  5. Four-vector - Wikipedia

    en.wikipedia.org/wiki/Four-vector

    Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...

  6. Representation theory of the Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    Here, the elements of the Weyl group are considered as orthogonal transformations, acting by matrix multiplication, on the real vector space of roots. If −I is an element of the Weyl group of a semisimple Lie algebra, then w 0 = −I. In the case of (,), the Weyl group is W = {I, −I}. [103]

  7. History of Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/History_of_Lorentz...

    In the special relativity, Lorentz transformations exhibit the symmetry of Minkowski spacetime by using a constant c as the speed of light, and a parameter v as the relative velocity between two inertial reference frames. Using the above conditions, the Lorentz transformation in 3+1 dimensions assume the form:

  8. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    The theory of special relativity plays an important role in the modern theory of classical electromagnetism.It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another.

  9. Relativistic angular momentum - Wikipedia

    en.wikipedia.org/wiki/Relativistic_angular_momentum

    The angular momentum tensor M is indeed a tensor, the components change according to a Lorentz transformation matrix Λ, as illustrated in the usual way by tensor index notation ′ = ′ ′ ′ ′ = = =, where, for a boost (without rotations) with normalized velocity β = v/c, the Lorentz transformation matrix elements are = = = = + and the ...