Search results
Results From The WOW.Com Content Network
Figures shown in the same color are similar. If two angles of a triangle have measures equal to the measures of two angles of another triangle, then the triangles are similar. Corresponding sides of similar polygons are in proportion, and corresponding angles of similar polygons have the same measure.
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.
AAS (angle-angle-side): If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. AAS is equivalent to an ASA condition, by the fact that if any two angles are given, so is the third angle, since their sum should be 180°.
Direct similarity implies that all angles are equal between two given triangle and that they share the same rotational sense. [2] As is seen in the adjacent images, in the directly similar triangles, the rotation of B {\displaystyle B} onto C {\displaystyle C} and B 1 {\displaystyle B^{1}} onto C 1 {\displaystyle C^{1}} occurs in the same ...
In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels (same shape, different sizes) with the same boundary conditions (e.g., no-slip, center-line velocity) and the same Reynolds and Womersley numbers, then the fluid flows will be identical.
All pairs of congruent triangles are also similar, but not all pairs of similar triangles are congruent. Given two congruent triangles, all pairs of corresponding interior angles are equal in measure, and all pairs of corresponding sides have the same length. This is a total of six equalities, but three are often sufficient to prove congruence ...
A spiral similarity taking triangle ABC to triangle A'B'C'. Spiral similarity is a plane transformation in mathematics composed of a rotation and a dilation. [1] It is used widely in Euclidean geometry to facilitate the proofs of many theorems and other results in geometry, especially in mathematical competitions and olympiads.
In mathematics, a self-similar object is exactly or approximately similar to a part of itself (i.e., the whole has the same shape as one or more of the parts). Many objects in the real world, such as coastlines , are statistically self-similar: parts of them show the same statistical properties at many scales. [ 2 ]