When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    The QR decomposition via Givens rotations is the most involved to implement, as the ordering of the rows required to fully exploit the algorithm is not trivial to determine. However, it has a significant advantage in that each new zero element a i j {\displaystyle a_{ij}} affects only the row with the element to be zeroed ( i ) and a row above ...

  3. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix A , upon convergence, AQ = QΛ , where Λ is the diagonal matrix of eigenvalues to which A converged, and where Q is a composite of all the orthogonal similarity transforms required to get there.

  4. RRQR factorization - Wikipedia

    en.wikipedia.org/wiki/RRQR_factorization

    An RRQR factorization or rank-revealing QR factorization is a matrix decomposition algorithm based on the QR factorization which can be used to determine the rank of a matrix. [1] The singular value decomposition can be used to generate an RRQR, but it is not an efficient method to do so. [2] An RRQR implementation is available in MATLAB. [3]

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The set of matrices of the form A − λB, where λ is a complex number, is called a pencil; the term matrix pencil can also refer to the pair (A, B) of matrices. [ 14 ] If B is invertible, then the original problem can be written in the form B − 1 A v = λ v {\displaystyle \mathbf {B} ^{-1}\mathbf {A} \mathbf {v} =\lambda \mathbf {v} } which ...

  6. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    This new matrix A 3 is the upper triangular matrix needed to perform an iteration of the QR decomposition. Q is now formed using the transpose of the rotation matrices in the following manner: Q = G 1 T G 2 T . {\displaystyle Q=G_{1}^{T}\,G_{2}^{T}.}

  7. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this ...

  8. Pivotal quantity - Wikipedia

    en.wikipedia.org/wiki/Pivotal_quantity

    Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.

  9. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    By first proving that the missing data are ignored in the cost function, then proving that the impact from missing data can be as small as a second order effect, Ren et al. (2020) [5] studied and applied such an approach for the field of astronomy. Their work focuses on two-dimensional matrices, specifically, it includes mathematical derivation ...