Search results
Results From The WOW.Com Content Network
Another simple example is given by the infinite cyclic group : the Cayley graph of with respect to the generating set {} is a line, so all triangles are line segments and the graph is -hyperbolic. It follows that any group which is virtually cyclic (contains a copy of Z {\displaystyle \mathbb {Z} } of finite index) is also hyperbolic, for ...
One has a hyperboloid of revolution if and only if =. Otherwise, the axes are uniquely defined (up to the exchange of the x-axis and the y-axis). There are two kinds of hyperboloids. In the first case (+1 in the right-hand side of the equation): a one-sheet hyperboloid, also called a hyperbolic hyperboloid.
Subsets of the theory of hyperbolic groups can be used to give more examples of hyperbolic spaces, for instance the Cayley graph of a small cancellation group. It is also known that the Cayley graphs of certain models of random groups (which is in effect a randomly-generated infinite regular graph) tend to be hyperbolic very often.
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
The hyperbolic distance between two points on the hyperboloid can then be identified with the relative rapidity between the two corresponding observers. The model generalizes directly to an additional dimension: a hyperbolic 3-space three-dimensional hyperbolic geometry relates to Minkowski 4-space.
The Cayley graph of a free group with two generators. This is a hyperbolic group whose Gromov boundary is a Cantor set. Hyperbolic groups and their boundaries are important topics in geometric group theory, as are Cayley graphs. The (6,4,2) triangular hyperbolic tiling. The triangle group corresponding to this tiling has a circle as its Gromov ...
In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...
A hyperbolic geometric graph (HGG) or hyperbolic geometric network (HGN) is a special type of spatial network where (1) latent coordinates of nodes are sprinkled according to a probability density function into a hyperbolic space of constant negative curvature and (2) an edge between two nodes is present if they are close according to a function of the metric [1] [2] (typically either a ...