Search results
Results From The WOW.Com Content Network
For example, when shifting a 32 bit unsigned integer, a shift amount of 32 or higher would be undefined. Example: If the variable ch contains the bit pattern 11100101, then ch >> 1 will produce the result 01110010, and ch >> 2 will produce 00111001. Here blank spaces are generated simultaneously on the left when the bits are shifted to the right.
This article is a stub. You can help Wikipedia by expanding it.
The operation may be used to determine whether a particular bit is set (1) or cleared (0). For example, given a bit pattern 0011 (decimal 3), to determine whether the second bit is set we use a bitwise AND with a bit pattern containing 1 only in the second bit: 0011 (decimal 3) AND 0010 (decimal 2) = 0010 (decimal 2)
Therefore inversion of the values of bits is done by XORing them with a 1. If the original bit was 1, it returns 1 XOR 1 = 0. If the original bit was 0 it returns 0 XOR 1 = 1. Also note that XOR masking is bit-safe, meaning that it will not affect unmasked bits because Y XOR 0 = Y, just like an OR. Example: Toggling bit values
Source code that does bit manipulation makes use of the bitwise operations: AND, OR, XOR, NOT, and possibly other operations analogous to the boolean operators; there are also bit shifts and operations to count ones and zeros, find high and low one or zero, set, reset and test bits, extract and insert fields, mask and zero fields, gather and ...
A bit array (also known as bitmask, [1] bit map, bit set, bit string, or bit vector) is an array data structure that compactly stores bits. It can be used to implement a simple set data structure . A bit array is effective at exploiting bit-level parallelism in hardware to perform operations quickly.
One method called the inversion method, involves integrating up to an area greater than or equal to the random number (which should be generated between 0 and 1 for proper distributions). A second method called the acceptance-rejection method, involves choosing an x and y value and testing whether the function of x is greater than the y value ...
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...