Search results
Results From The WOW.Com Content Network
Nickel elements have a limited temperature range because the temperature coefficient of resistance changes at temperatures over 300 °C (572 °F). Copper has a very linear resistance–temperature relationship; however, copper oxidizes at moderate temperatures and cannot be used over 150 °C (302 °F). [citation needed]
The more regular the lattice is, the less disturbance happens and thus the less resistance. The amount of resistance is thus mainly caused by two factors. First, it is caused by the temperature and thus amount of vibration of the crystal lattice. Higher temperatures cause bigger vibrations, which act as irregularities in the lattice.
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
Thermal resistance is the inverse of thermal ... whose significance for λ L depends on the temperature range of ... next to this was copper, then gold, tin, iron ...
It usually consists of 55% copper and 45% nickel. [2] Its main feature is the low thermal variation of its resistivity, which is constant over a wide range of temperatures. Other alloys with similarly low temperature coefficients are known, such as manganin (Cu [86%] / Mn [12%] / Ni [2%] ).
A positive temperature coefficient (PTC) refers to materials that experience an increase in electrical resistance when their temperature is raised. Materials which have useful engineering applications usually show a relatively rapid increase with temperature, i.e. a higher coefficient.
Sometime around 1913, several copper samples from 14 important refiners and wire manufacturers were analyzed by the U.S. Bureau of Standards. The average resistance of the samples was determined to be 0.15292 Ω for copper wires with a mass of 1 gram of uniform cross section and 1 meter in length at 20 °C. In the United States this is usually ...