Search results
Results From The WOW.Com Content Network
High signal for paramagnetic substances, such as MRI contrast agents [2] Standard foundation and comparison for other sequences T2 weighted: T2: Measuring spin–spin relaxation by using long TR and TE times Higher signal for more water content [1] Low signal for fat in standard Spine Echo (SE), [1] though not with Fast Spin Echo/Turbo Spin ...
An MRI pulse sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance. [ 1 ] A multiparametric MRI is a combination of two or more sequences, and/or including other specialized MRI configurations such as spectroscopy .
Fast spin echo (RARE, FAISE or FSE [10] [11] [12]), also called turbo spin echo (TSE) is an MRI sequence that results in fast scan times. In this sequence, several 180 refocusing radio-frequency pulses are delivered during each echo time (TR) interval, and the phase-encoding gradient is briefly switched on between echoes. [ 13 ]
Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to form images of the organs in the body.
An application of the estimation of σ can be found in magnetic resonance imaging (MRI). As MRI images are recorded as complex images but most often viewed as magnitude images, the background data is Rayleigh distributed. Hence, the above formula can be used to estimate the noise variance in an MRI image from background data. [7] [8]
The presence of edema within the bone marrow yields a visible signal on the MRI, due to displacement of the normally fatty tissue within the marrow by interstitial fluid with higher water content; this change in composition is then reflected by the MRI due to differences in the T1-weighted and T2-weighted images. [5] [1]
The physical basis of MRI is the spatial encoding of the nuclear magnetic resonance (NMR) signal obtainable from water protons (i.e. hydrogen nuclei) in biologic tissue. In terms of MRI, signals with different spatial encodings that are required for the reconstruction of a full image need to be acquired by generating multiple signals ...