Search results
Results From The WOW.Com Content Network
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of roughness of the pipe to the ...
In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
Minor losses in pipe flow are a major part in calculating the flow, pressure, or energy reduction in piping systems. Liquid moving through pipes carries momentum and energy due to the forces acting upon it such as pressure and gravity.
Jean Le Rond d'Alembert, Nouvelles expériences sur la résistance des fluides, 1777. In fluid dynamics, friction loss (or frictional loss) is the head loss that occurs in a containment such as a pipe or duct due to the effect of the fluid's viscosity near the surface of the containment.
Assuming the Fanning friction factor is a constant along the duct wall, the differential equation can be solved easily. [ 2 ] [ 3 ] One must keep in mind, however, that the value of the Fanning friction factor can be difficult to determine for supersonic and especially hypersonic flow velocities.
The Darcy-Weisbach equation was difficult to use because the friction factor was difficult to estimate. [7] In 1906, Hazen and Williams provided an empirical formula that was easy to use. The general form of the equation relates the mean velocity of water in a pipe with the geometric properties of the pipe and the slope of the energy line.
For circular pipes of different surface roughness, at a Reynolds number below the critical value of approximately 2000 [2] pipe flow will ultimately be laminar, whereas above the critical value turbulent flow can persist, as shown in Moody chart. For non-circular pipes, such as rectangular ducts, the critical Reynolds number is shifted, but ...