Search results
Results From The WOW.Com Content Network
If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
the outer product of two column vectors and is denoted and defined as ... Nasa.gov, An introduction to Tensors for students of Physics and Engineering, J.C. Kolecki
The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...
The cross product u × v can be interpreted as a vector which is perpendicular to both u and v and whose magnitude is equal to the area of the parallelogram determined by the two vectors. It can also be interpreted as the vector consisting of the minors of the matrix with columns u and v. The triple product of u, v, and w is geometrically a ...
Topological tensor product. The tensor product, outer product and Kronecker product all convey the same general idea. The differences between these are that the Kronecker product is just a tensor product of matrices, with respect to a previously-fixed basis, whereas the tensor product is usually given in its intrinsic definition. The outer ...
The divergence of a higher-order tensor field may be found by decomposing the tensor field into a sum of outer products and using the identity, = + where is the directional derivative in the direction of multiplied by its magnitude.
Some useful relations in the algebra of vectors and second-order tensors in curvilinear coordinates are given in this section. The notation and contents are primarily from Ogden, [ 2 ] Naghdi, [ 3 ] Simmonds, [ 4 ] Green and Zerna, [ 1 ] Basar and Weichert, [ 5 ] and Ciarlet.